CONTENTS

MATHEMATICAL METHODS AND MODELLING
ON THE TOLERANCE MODELLING OF PDEs WITH NON-UNIFORMLY OSCILLATING COEFFICIENTS (Jowita RYCHLEWSKA Czesław WOŹNIAK) 13
AN INTEGRATED MODEL OF A FIBROUS COMPOSITE MATERIAL (Romuald ŚWITKA)
TOLERANCE MODELLING OF QUASI-LINEAR HEAT CONDUCTION IN FUNCTIONALLY GRADED LAMINATES
(Urszula SIEDLECKA, Ewaryst WIERZBICKI, Czesław WOŹNIAK)
MODELLING AND OPTIMIZATION OF THERMAL PROPERTIES OF FIBER REINFORCED COMPOSITE MATERIAL SUBJECTED TO THERMAL LOAD
(Krzysztor DEMIS, Elzbieta KADASZE WSKA)

CHAPTER 6.	COMBINED MODELLING OF PERIODICALLY
	(Darbara TOMCZVK) 70
	(Darbara IONCZIK)
CHAPTER 7.	ON THE MODELLING OF STABILITY OF
	COMPOSITE THIN PLATES WITH CERTAIN
	LONGITUDINALLY GRADED MATERIALS
	(Bohdan MICHALAK) 99
CHAPTER 8.	THE TOLERANCE MODELING OF DYNAMIC
	BEHAVIOUR OF LONGITUDINARY GRADED
	ANNULAR PLATES
	(Artur WIROWSKI) 109
PART 2.	COUPLED FIELDS
CHAPTER 9.	DIFFUSION AND HEAT CONDUCTION IN
	NONLINEAR THERMOPOROELASTIC MEDIA
	(Krzysztof WILMAŃSKI) 123
CHAPTER 10.	FUNDAMENTAL SOLUTION FOR THE QUASI-
	STATIC PROBLEM OF ELASTIC THERMODIFFUSION
	IN THE MICROPOLAR SOLID
	(Barbara WIECZOREK) 149
CHAPTER 11.	FEM MODELLING OF CONCRETE COVER
	DEGRADATION CAUSED BY REBARS
	CORROSION IN REINFORCED CONCRETE
	(Tomasz KRYKOWSKI, Adam ZYBURA) 161
CHAPTER 12.	LOVE WAVES IN DEFORMED FOAM RUBBER
	(Anna KOSIŃSKA, Sławomir KOSIŃSKI) 189

CHAPTER 13.	METHOD OF OPTIMIZATION OF HEATING	
	TREATMENT OF GLASS-MADE PIECEWISE-	
	HOMOGENEOUS SHELLS OF REVOLUTION	
	WITH ALLOWANCE FOR THE TEMPERATURE	
	SENSITIVITY OF ALLOWABLE STRESSES	
	(Bohdan BOZHENKO, Volodymyr BOYCHUK,	
	Oleksandr HACHKEVYCH, Mykola HACHKEVYCH,	
	Zygmunt KASPERSKI)	201
PART 3.	THEORY OF MATERIALS AND	
	STRUCTURES	
CHAPTER 14.	FOUNDATIONS OF MECHANICS OF	
	CARBON NANOTUBES	
	(Gwidon SZEFER)	223
CHAPTER 15.	OPTIMAL FIBERS ARRANGEMENT IN	
	COMPOSITE MATERIALS	
	(Krzysztof DEMS, Jacek WIŚNIEWSKI)	241
CHAPTER 16.	ON THE MODELLING OF DYNAMICS AND	
	STABILITY PROBLEMS FOR THIN FUNCTIONALLY	
	GRADED PLATES	
	(Jarosław JĘDRYSIAK)	271
CHAPTER 17.	VIBRATIONS AND WAVES IN A PERIODICALLY	
	RIBBED ELASTIC PLATE	
	(Wiesław NAGÓRKO)	279
CHAPTER 18.	THE IDENTIFICATION OF THE PARAMETERS OF	
	MAGNETORHEOLOGICAL COMPOSITE MODEL	
	(Daniel LEWANDOWSKI, Grażyna ZIĘTEK)	285

CHAPTER 19.	ON DELAMINATION PROBLEM IN FIBER
	REINFORCED SHELLES
	(Krzysztof KULA, Rainer SCHLEBUSCH,
	Mieczysław KUCZMA, Bernd W. ZASTRAU) 311
CHAPTER 20.	MODERN TESTING OF MECHANICAL PROPERTIES
	OF BRICK MASONRY
	(Krystyna URBAŃSKA, Mieczysław KUCZMA) 323
REFERENCES .	
INDEX	

PREFACE

It has been already recognized in the XXth century that many structural materials possess either natural or artificially created inhomogeneities which must be accounted for in continuous models. These are, for instance, polycrystals, composite materials, dense structures such as grids, porous and granular materials and many others. Mathematical methods developed for the description of such materials were designed for transition from microstructural properties to effective macroscopic parameters describing their behaviour. Three main ways have been extensively discussed: volume averaging, homogenization and numerical approximations. In spite of a very extensive research (for a very competent review see, for example, the book by Greame W. Milton, The Theory of Composites, Cambridge University Press, 2004). many important issues are not even alluded. It is the main aim of the series of conferences "Mechanics of Inhomogeneous Media" held in Łagów (Poland) to present the progress in this field. As a result of the first conference in this series the book "Selected Topics in the Mechanics of Inhomogeneous Media" edited by Czesław Woźniak, Romuald Świtka and Mieczysław Kuczma was published in 2006 by the University of Zielona Góra.

In 2008 the second conference of this series was held and the present book contains articles which were presented at this conference. It is a multiauthor work of 20 individual Chapters written by 33 scientists.

Three main topics corresponding to three Parts of the book are covered:

- 1. Mathematical methods and modelling,
- 2. Coupled fields,
- 3. Theory of materials and structures.

The most important method discussed within the first topic is the method of tolerance in various applications to functionally graded materials. However, the classical problems of optimization of inhomogeneous materials and homogenization based on some compatibility conditions are also presented.

Within the second topic, modelling by an extended number of fields is presented. These are, for instance, multicomponent macroscopic continuous models. Finally, within the third topic, some particular problems of systems whose microstructure persists in macroscopic models are discussed. These are, for example, materials with nanotubes, periodically ribbed plates, or brick masonry.

The editors of this volume would like to express their gratitude to the Authors for preparing the papers in the form of self-contained Chapters and for their cooperation in editing this volume.

Czesław Woźniak Mieczysław Kuczma Romuald Świtka Krzysztof Wilmański